1,237 research outputs found

    A study of atmospheric effects on pattern recognition devices

    Get PDF
    The author has identified the following significant results. ERTS-1 imagery can be applied in the broadscale assessment of forest resources as a supplement to aerial photography and field survey. There was no application to inventory of crop and pasture diseases mainly because of poor quality and low resolution, and unreliability of image acquisition. Inventory of soil erosion was satisfactory in humid eastern New South Wales, but not in semi-arid areas. Patterns of snow cover, areas of water in natural and artificial water bodies, extent of bushfires, and location of coastal mobile sand bodies were readily apparent. ERTS-1 imagery was judged to be a valuable addition to conventional techniques of regional small scale geological mapping. ERTS data was successfully used to map flooding and flood progression. The imagery was found suitable for mapping at 1:1,000,000 scale both on the mainland and in Antarctica, but did not meet accuracy specifications for 1:250,000 mapping

    Investigation of Techniques for Inventorying Forested Regions. Volume 1: Reflectance Modeling and Empirical Multispectral Analysis of Forest Canopy Components

    Get PDF
    The author has identified the following significant results. Effects of vegetation density on overall canopy reflectance differed dramatically, depending on spectral band, base material, and vegetation type. For example, reflectance changes caused by variations in vegetation density were hardly apparant for a simulated burned surface in LANDSAT band 5, while large changes occurred in band 7. When increasing densities of tree overstory were placed over understories, intermediate to dense overstories effectively masked the understories and dominated the spectral signatures. Dramatic changes in reflectance occurred for canopies placed on a number of varying topographic positions. Such changes were seen to result in the spectral overlap of some nonforested with densely forested situations

    Analysis of recreational land using Skylab data

    Get PDF
    The author has identified the following significant results. S192 data collected on 5 August 1973 were processed by computer to produce a classification map of a part of the Gratiot-Saginaw State Game Area in south central Michigan. A 10-category map was prepared of an area consisting of diverse terrain types, including forests, wetlands, brush, and herbaceous vegetation. An accuracy check indicated that 54% of the pixels were correctly recognized. When these ten scene classes were consolidated to a 5-category map, the accuracy increased to 72%. S190 A, S190 B, and S192 data can be used for regional surveys of existing and potential recreation sites, for delineation of open space, and for preliminary evaluation of geographically extensive sites

    The influence of multispectral scanner spatial resolution on forest feature classification

    Get PDF
    Inappropriate spatial resolution and corresponding data processing techniques may be major causes for non-optimal forest classification results frequently achieved from multispectral scanner (MSS) data. Procedures and results of empirical investigations are studied to determine the influence of MSS spatial resolution on the classification of forest features into levels of detail or hierarchies of information that might be appropriate for nationwide forest surveys and detailed in-place inventories. Two somewhat different, but related studies are presented. The first consisted of establishing classification accuracies for several hierarchies of features as spatial resolution was progressively coarsened from (2 meters) squared to (64 meters) squared. The second investigated the capabilities for specialized processing techniques to improve upon the results of conventional processing procedures for both coarse and fine resolution data

    Quantum Hall states under conditions of vanishing Zeeman energy

    Full text link
    We report on magneto-transport measurements of a two-dimensional electron gas confined in a Cd0.997_{0.997}Mn0.003_{0.003}Te quantum well structure under conditions of vanishing Zeeman energy. The electron Zeeman energy has been tuned via the sds-d exchange interaction in order to probe different quantum Hall states associated with metallic and insulating phases. We have observed that reducing Zeeman energy to zero does not necessary imply the disappearing of quantum Hall states, i.e. a closing of the spin gap. The spin gap value under vanishing Zeeman energy conditions is shown to be dependent on the filling factor. Numerical simulations support a qualitative description of the experimental data presented in terms of a crossing or an avoided-crossing of spin split Landau levels with same orbital quantum number NN

    Magnetodielectric effect and optic soft mode behaviour in quantum paraelectric EuTiO3 ceramics

    Full text link
    Infrared reflectivity and time-domain terahertz transmission spectra of EuTiO3 ceramics revealed a polar optic phonon at 6 - 300K, whose softening is fully responsible for the recently observed quantum paraelectric behaviour. Even if our EuTiO3 ceramics show lower permittivity than the single crystal due to a reduced density and/or small amount of secondary pyrochlore Eu2Ti2O7 phase, we confirmed the magnetic field dependence of the permittivity, also slightly smaller than in single crystal. Attempt to reveal the soft phonon dependence at 1.8K on the magnetic field up to 13T remained below the accuracy of our infrared reflectivity experiment

    Large-scale environments of binary AGB stars probed by Herschel. II: Two companions interacting with the wind of pi1 Gruis

    Full text link
    Context. The Mass loss of Evolved StarS (MESS) sample observed with PACS on board the Herschel Space Observatory revealed that several asymptotic giant branch (AGB) stars are surrounded by an asymmetric circumstellar envelope (CSE) whose morphology is most likely caused by the interaction with a stellar companion. The evolution of AGB stars in binary systems plays a crucial role in understanding the formation of asymmetries in planetary nebul{\ae} (PNe), but at present, only a handful of cases are known where the interaction of a companion with the stellar AGB wind is observed. Aims. We probe the environment of the very evolved AGB star π1\pi^1 Gruis on large and small scales to identify the triggers of the observed asymmetries. Methods. Observations made with Herschel/PACS at 70 μ\mum and 160 μ\mum picture the large-scale environment of π1\pi^1 Gru. The close surroundings of the star are probed by interferometric observations from the VLTI/AMBER archive. An analysis of the proper motion data of Hipparcos and Tycho-2 together with the Hipparcos Intermediate Astrometric Data help identify the possible cause for the observed asymmetry. Results. The Herschel/PACS images of π1\pi^1 Gru show an elliptical CSE whose properties agree with those derived from a CO map published in the literature. In addition, an arc east of the star is visible at a distance of 3838^{\prime\prime} from the primary. This arc is most likely part of an Archimedean spiral caused by an already known G0V companion that is orbiting the primary at a projected distance of 460 au with a period of more than 6200 yr. However, the presence of the elliptical CSE, proper motion variations, and geometric modelling of the VLTI/AMBER observations point towards a third component in the system, with an orbital period shorter than 10 yr, orbiting much closer to the primary than the G0V star.Comment: 13 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    X-ray observational signature of a black hole accretion disc in an active galactic nucleus RXJ1633+4718

    Full text link
    We report the discovery of a luminous ultra-soft X-ray excess in a radio-loud narrow-line Seyfert1 galaxy, RXJ1633+4718, from archival ROSAT observations. The thermal temperature of this emission, when fitted with a blackbody, is as low as 32.5(+8.0,-6.0)eV. This is in remarkable contrast to the canonical temperatures of ~0.1-0.2keV found hitherto for the soft X-ray excess in active galactic nuclei (AGN), and is interestingly close to the maximum temperature predicted for a postulated accretion disc in this object. If this emission is indeed blackbody in nature, the derived luminosity [3.5(+3.3,-1.5)x10^(44)ergs/s] infers a compact emitting area with a size [~5x10^(12)cm or 0.33AU in radius] that is comparable to several times the Schwarzschild radius of a black hole at the mass estimated for this AGN (3x10^6Msun). In fact, this ultra-steep X-ray emission can be well fitted as the (Compton scattered) Wien tail of the multi-temperature blackbody emission from an optically thick accretion disc, whose parameters inferred (black hole mass and accretion rate) are in good agreement with independent estimates using optical emission line spectrum. We thus consider this feature as a signature of the long-sought X-ray radiation directly from a disc around a super-massive black hole, presenting observational evidence for a black hole accretion disc in AGN. Future observations with better data quality, together with improved independent measurements of the black hole mass, may constrain the spin of the black hole.Comment: 8 pages, 4 figures, ApJ in pres

    Small and large polarons in nickelates, manganites, and cuprates

    Full text link
    By comparing the optical conductivities of La_{1.67}Sr_{0.33}NiO_{4} (LSNO), Sr_{1.5}La_{0.5}MnO_4 (SLMO), Nd_2CuO_{4-y} (NCO), and Nd_{1.96}Ce_{0.04}CuO_{4} (NCCO), we have identified a peculiar behavior of polarons in this cuprate family. While in LSNO and SLMO small polarons localize into ordered structures below a transition temperature, in those cuprates the polarons appear to be large, and at low T their binding energy decreases. This reflects into an increase of the polaron radius, which may trigger coherent transport.Comment: File latex, 15 p. incl. 4 Figs. epsf, to appear on the Journal of Superconductivity - Proc. "Stripes 1996" - Roma Dec 199

    Non-linear electromagnetic response of graphene

    Full text link
    It is shown that the massless energy spectrum of electrons and holes in graphene leads to the strongly non-linear electromagnetic response of this system. We predict that the graphene layer, irradiated by electromagnetic waves, emits radiation at higher frequency harmonics and can work as a frequency multiplier. The operating frequency of the graphene frequency multiplier can lie in a broad range from microwaves to the infrared.Comment: 5 pages, 3 figure
    corecore